📢 #Gate广场征文活动第三期# 正式啓動!
🎮 本期聚焦:Yooldo Games (ESPORTS)
✍️ 分享獨特見解 + 參與互動推廣,若同步參與 Gate 第 286 期 Launchpool、CandyDrop 或 Alpha 活動,即可獲得任意獎勵資格!
💡 內容創作 + 空投參與 = 雙重加分,大獎候選人就是你!
💰總獎池:4,464 枚 $ESPORTS
🏆 一等獎(1名):964 枚
🥈 二等獎(5名):每人 400 枚
🥉 三等獎(10名):每人 150 枚
🚀 參與方式:
在 Gate廣場發布不少於 300 字的原創文章
添加標籤: #Gate广场征文活动第三期#
每篇文章需 ≥3 個互動(點讚 / 評論 / 轉發)
發布參與 Launchpool / CandyDrop / Alpha 任一活動的截圖,作爲獲獎資格憑證
同步轉發至 X(推特)可增加獲獎概率,標籤:#GateSquare 👉 https://www.gate.com/questionnaire/6907
🎯 雙倍獎勵機會:參與第 286 期 Launchpool!
質押 BTC 或 ESPORTS,瓜分 803,571 枚 $ESPORTS,每小時發放
時間:7 月 21 日 20:00 – 7 月 25 日 20:00(UTC+8)
🧠 寫作方向建議:
Yooldo
蘋果研究人員:主流AI模型仍無法達到AGI期望推理水平
Gate News bot 消息,蘋果研究人員在 6 月份發表的一篇名爲《思考的幻覺》的論文中指出,領先的人工智能 (AGI) 模型在推理方面仍存在困難,因此,開發通用人工智能 (AGI) 的競賽仍任重道遠。
文章指出,主流人工智能大型語言模型 (LLM)(例如 OpenAI 的 ChatGPT 和 Anthropic 的 Claude)的最新更新已包含大型推理模型 (LRM),但其基本功能、擴展特性和局限性“仍未得到充分理解”。
目前的評估主要側重於既定的數學和編碼基準,“強調最終答案的準確性”。然而,研究人員表示,這項評估並未深入了解人工智能模型的推理能力,與通用人工智能僅需幾年就能實現的預期形成了鮮明對比。
研究人員設計了不同的益智遊戲,以超越標準數學基準來測試克勞德·桑奈(Claude Sonnet)、OpenAI 的 o3-mini 和 o1 以及 DeepSeek-R1 和 V3 聊天機器人的“思考”和“非思考”變體。
他們發現,“前沿的邏輯推理模型(LRM)在超過一定復雜度時會面臨準確率的徹底崩潰”,無法有效地泛化推理,而且其優勢會隨着復雜度的上升而消失,這與人們對通用人工智能(AGI)能力的預期相反。
消息來源:Cointelegraph