🍁 金秋送福,大獎轉不停!Gate 廣場第 1️⃣ 3️⃣ 期秋季成長值抽獎大狂歡開啓!
總獎池超 $15,000+,iPhone 17 Pro Max、Gate 精美週邊、大額合約體驗券等你來抽!
立即抽獎 👉 https://www.gate.com/activities/pointprize/?now_period=13&refUid=13129053
💡 如何攢成長值,解鎖更多抽獎機會?
1️⃣ 進入【廣場】,點頭像旁標識進入【社區中心】
2️⃣ 完成發帖、評論、點讚、社群發言等日常任務,成長值拿不停
100% 必中,手氣再差也不虧,手氣爆棚就能抱走大獎,趕緊試試手氣!
詳情: https://www.gate.com/announcements/article/47381
#成长值抽奖赢iPhone17和精美周边# #BONK# #BTC# #ETH# #GT#
蘋果研究人員:主流AI模型仍無法達到AGI期望推理水平
Gate News bot 消息,蘋果研究人員在 6 月份發表的一篇名爲《思考的幻覺》的論文中指出,領先的人工智能 (AGI) 模型在推理方面仍存在困難,因此,開發通用人工智能 (AGI) 的競賽仍任重道遠。
文章指出,主流人工智能大型語言模型 (LLM)(例如 OpenAI 的 ChatGPT 和 Anthropic 的 Claude)的最新更新已包含大型推理模型 (LRM),但其基本功能、擴展特性和局限性“仍未得到充分理解”。
目前的評估主要側重於既定的數學和編碼基準,“強調最終答案的準確性”。然而,研究人員表示,這項評估並未深入了解人工智能模型的推理能力,與通用人工智能僅需幾年就能實現的預期形成了鮮明對比。
研究人員設計了不同的益智遊戲,以超越標準數學基準來測試克勞德·桑奈(Claude Sonnet)、OpenAI 的 o3-mini 和 o1 以及 DeepSeek-R1 和 V3 聊天機器人的“思考”和“非思考”變體。
他們發現,“前沿的邏輯推理模型(LRM)在超過一定復雜度時會面臨準確率的徹底崩潰”,無法有效地泛化推理,而且其優勢會隨着復雜度的上升而消失,這與人們對通用人工智能(AGI)能力的預期相反。
消息來源:Cointelegraph